Article 3321

Title of the article

A possible theory of partial differential equations 

Authors

Robert Lloyd Jackson II, Medical Doctorate (9427 W. 161st Terrace, Stilwell, Kansas 66085), E-mail: rljacksonmd@gmail.com 

Index UDK

517.95 

DOI

10.21685/2072-3040-2021-3-3 

Abstract

The current gold standard for solving [nonlinear] partial differential equations, or [N]PDEs, is the simplest equation method, or SEM. Another prior technique for solving such equations, the G'/G-expansion method, appears to branch from the simplest equation method (SEM). This study discusses a new method for solving PDEs called the generating function technique (GFT) which may establish new precedence concerning SEM. First, the study shows how GFT relates to SEM and the G'/G-expansion method. Next, the paper describes a new theorem that incorporates GFT and Ring theory in the finding of solutions to PDEs. Then the novel technique is applied in the derivation of new or exotic solutions to the Benjamin-Ono, a QFT (nonlinear Klein-Gordon), and Good Boussinesq-like equations. Finally, the study concludes via a discourse on the reasons why the technique is better than SEM and G'/G-expansion method and the scope and range of what GFT could accomplish in the realm of mathematics, specifically differential equations. 

Key words

differential equations, generating function technique, G'/G-expansion method, simplest equation method 

 Download PDF
References

1. Lindenstrauss J., Evans L.C., Douady A., Shalev A., Pippenger N. Fields Medals and Nevanlinna Prize presented at ICM-94 in Zürich, Notices Amer. Math. Soc. 1994;41(9):1103–1111.
2. Adomian G. Solving Frontier Problems of Physics: The decomposition method. Kluwer Academic Publishers, 1994.
3. Liao S.J. Homotopy Analysis Method in Nonlinear Differential Equation. Berlin & Beijing: Springer & Higher Education Press, 2012.
4. Kudryashov N. Exact solitary waves of the Fisher equation. Physics Letters A. 2005;342(1-2):99–106.
5. He J.H. Exp-function method for nonlinear wave equations. Chaos, Solitons and Fractals. 2006;30:700–708
6. Wang M. The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A. 2008;372:417–423.
7. de Branges L. The Stone–Weierstrass theorem. Proc. Amer. Math. Soc. 1959;10:822–824. doi:10.1090/s0002-9939-1959-0113131-7
8. Nakhushev A.M. Cauchy–Kovalevskaya theorem. Encyclopedia of Mathematics, Springer Science+Business Media B. V. Hazewinkel, Michiel (ed.). Kluwer Academic Publishers, 2001.
9. Chadwick E. Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain. Proc. Indian Acad. Sci. (Math. Sci.). 2015;126(1):79–97.
10. Allenby R.B.J.T. Edward Arnold. Rings, Fields and Groups (Second ed.). London, 1991:xxvi+383.
11. Niven I. Formal Power Series. American Mathematical Monthly. 1969;76(8):871–889. doi:10.1080/00029890.1969.12000359
12. Knuth D.E. The Art of Computer Programming, Volume 1 Fundamental Algorithms (Third Edition). Addison-Wesley, 1998.
13. Riccati J. Animadversiones in aequationes differentiales secundi gradus (Observations regarding differential equations of the second order). Actorum Eruditorum, quae Lipsiae publicantur, Supplementa. 1724;8:66–73 [Translation of the original Latin into English by Ian Bruce].
14. Rodriguez. Complex Analysis: In the Spirit of Lipman Bers, Graduate Texts in Mathematics. Springer, 2012:12.
15. Herstein H. Topics in Algebra. Wiley, 1975;Section 3.9;Section 3.6.
16. Dries L. van de. Exponential Rings, Exponential Polynomials and Exponential Functions. Pacific Journal of Mathematics. 1984;133(1):51–66.
17. Kobayashi N. Foundations of Differential Geometry. Wiley-Interscience, 2004;2.
18. Goodearl K.R., Warfield R.B. An Introduction to Noncommutative Noetherian Rings. Second Edition. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 2004.
19. Gradshteyn I.S., Ryzhik I.M., Geronimus Y.V., Tseytlin M.Yu., Jeffrey A. Table of Integrals, Series, and Products. Academic Press, 2015:18.
20. Cohn P.M. Free ideal rings and free products of rings. Actes du Congrès International des Mathématicien. Gauthier-Villars, 1971:273–278.
21. Cauchy A. Mémoire sur l'emploi du calcul des limites dans l'intégration des équations aux dérivées partielles. Comptes rendus, 15 Reprinted in Oeuvres completes, 1 serie. 1842;VII:17–58.
22. Kowalevsky S. Zur Theorie der partiellen Differentialgleichung. Journal für die reine und angewandte Mathematik. 1875;80:1–32.

 

Дата создания: 30.11.2021 09:30
Дата обновления: 07.12.2021 14:14